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Abstract 

In Task 3.2, we developed a numerical strategy and two numerical solvers ̶ a cost-efficient code 
and an advanced code ̶ to simulate cavitating flows. These codes have undergone extensive 
validation against theoretical predictions and data from the literature. We used these numerical 
tools to select and tailor sample environments for the MHz X-ray microscopy. The results were 
also fed into the ML algorithm developed in Task 2.3. This document provides an overview of the 
codes developed for simulating the fluid flow phase in cavitation peening, their validation 
processes, and numerical results for selected sample environments. 

 

 

Executive Summary 

In deliverable D3.2, we report on the simulations of cavitation peening related to Task 3.2, in 
which we developed advanced numerical codes to predict the multi-phase interaction (liquid-gas 
and liquid-solid) in the cavitation peening process. These codes have been used to explore 
various aspects of cavitation peening. The obtained results will be refined and validated after 
collecting the MHz X-ray microscopy data (Task 3.4) and will be used as input for the ML algorithm 
developed in Task 2.3. 
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Introduction 

Cavitation refers to the formation of vapor bubbles in liquids when the local liquid pressure drops 
below the vapor pressure [1]. These structures collapse violently, generating short-duration, 
high-amplitude pressure waves as the flow recovers its pressure [1]. These pressure waves can 
enhance material fatigue life by inducing compressive residual stresses that delay crack growth, 
a process known as cavitation peening [2]. Cavitation involves complex physical phenomena, 
including shock waves and hydrodynamic features, spanning broad ranges of spatial and 
temporal scales. Resolving these features requires accurate numerical methodologies and 
significant computational resources. In Task 3.2, we developed, validated, and applied numerical 
codes to investigate cavitation peening.  

It is known that the mutual effects of the solid phase on fluid flow in cavitation peening are 
negligible because the length scale of pits produced in materials by cavitation is significantly 
smaller than the length scale of the hydrodynamic features in the flow field [3]. Therefore, the 
modeling process can be decoupled: the fluid flow is simulated first, and the results are 
subsequently used to model the peening process using solid mechanics numerical platforms. 
Following this approach, we developed numerical tools to simulate the fluid flow to meet the 
core objectives of Work Package 3. After calculating the forces exerted by fluid flow on solid 
surfaces, we employed codes developed by the Impact and Shock Mechanics Research Group at 
the University of Oxford to assess the effects of these forces on material specification.  

The developed numerical tools for fluid flow consist of an advanced, yet computationally 
expensive code and a cost-efficient solver. The advanced code employs the density-based 
approach, capturing all flow features, including acoustic waves, by restricting the numerical 
resolution to be significantly smaller than the smallest flow time scale. In contrast, the cost-
efficient code uses the pressure-based approach, incorporating fluid compressibility in the 
pressure-velocity coupling. This allows for a coarser numerical resolution compared to the 
advanced code, making it a suitable option for large parameter scans and sensitivity analyses. 

In this report, we briefly introduce the numerical tools, their validation processes, and some of 
our investigations into cavitation and the tailoring of sample environments for MHz X-ray 
microscopy.  
 

Numerical Codes 

Cost-efficient code 

In this code, we used the single fluid mixture model, in which both vapor and liquid phases are 
treated using one set of Navier-Stokes equations, which has been proven accurate in predicting 
complex features of cavitation [4-6]. The governing equations used in this solver are as below,  

𝜕𝜌

𝜕𝑡
+

∂(𝜌𝑢𝑘)

𝜕𝑥𝑘
= 0,                                                                                                                                          (1) 
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𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

∂(𝜌𝑢𝑖𝑢𝑘)

𝜕𝑥𝑘
= −

∂(𝑝𝛿𝑖𝑘)

𝜕𝑥𝑘
+

∂

𝜕𝑥𝑘
[𝜇 (

∂𝑢𝑖

𝜕𝑥𝑗
+

∂𝑢𝑗

𝜕𝑥𝑖
−

2

3

∂𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗)],                                                          (2) 

𝜕(𝜌𝑌)

𝜕𝑡
+

∂(𝜌𝑌𝑢𝑘)

𝜕𝑥𝑘
= 𝑆𝑒 − 𝑆𝑐,                                                                                                                         (3) 

where 𝑢 is the velocity, 𝜌 is the mixture density, 𝑝 is the pressure, 𝜇 is the viscosity, 𝑌 is the 
vapour mass fraction, and 𝛿𝑖𝑘 is the Kronecker delta. Here, the PIMPLE algorithm [7] was used to 
couple the pressure and velocity while considering the fluid compressibility. In Eq. 3, 𝑆𝑒 and 𝑆𝑐 
are the evaporation and condensation source terms, respectively, evaluated using the following 
expressions proposed by Saito et al. [8, 9],  

𝑆𝑒 = 𝐶𝑒𝛼2(1 − 𝛼)2 𝜌𝑙

𝜌𝑔

𝑚𝑎𝑥((𝑝𝑠𝑎𝑡−𝑝),0)

√2𝜋𝑅𝑔𝑇𝑟𝑒𝑓
,                                                                                                    (4) 

𝑆𝑐 = 𝐶𝑐𝛼2(1 − 𝛼)2 𝑚𝑎𝑥((𝑝𝑠𝑎𝑡−𝑝),0)

√2𝜋𝑅𝑔𝑇𝑟𝑒𝑓
,                                                                                                         (5) 

where 𝐶𝑒 and 𝐶𝑐 are the model constants, 𝛼 is the vapour volume fraction, 𝜌𝑙  is the liquid density, 
𝜌𝑔 is the gas density, 𝑝𝑠𝑎𝑡 is the saturated pressure, 𝑅𝑔 is the gas constant, and 𝑇𝑟𝑒𝑓 is the 

reference temperature. Here, 𝐶𝑒 and 𝐶𝑐 were set to 0.1, proven to be an optimum value to 
determine the mass transfer through evaporation and condensation [8]. 

In this solver, the mixture density and viscosity were defined as, 

𝜌 = 𝛼𝜌𝑣,𝑠𝑎𝑡 + (1 − 𝛼)𝜌𝑙,𝑠𝑎𝑡,                                                                                                                    (6) 

𝜇 = 𝛼𝜇𝑣 + (1 − 𝛼)𝜇𝑙,                                                                                                                               (7) 

where 𝜌𝑣,𝑠𝑎𝑡 is the saturated vapor density, 𝜇𝑣 is the vapour viscosity, 𝜌𝑙,𝑠𝑎𝑡 is the saturated liquid 
density, and 𝜇𝑙 is the liquid viscosity. Additionally, 𝛼 is related to 𝑌 by, 

𝜌𝑔𝛼 = 𝜌𝑌,                                                                                                                                                    (8) 

where 𝜌𝑔 was obtained by using the barotropic equation of state namely,  

𝑐𝑣
2 =

𝜕𝑝

𝜕𝜌𝑔
|

𝑠

,                                                                                                                                                   (9) 

where 𝑐𝑣 is the sound speed in the vapor. Here, the liquid density was calculated by,  

𝜌𝑙 = 𝜌𝑙,𝑠𝑎𝑡 +
𝑝

𝜌𝑐𝑙
2 ,                                                                                                                                     (10) 

where 𝑐𝑙 is the sound speed in the pure liquid [4]. In this code, fluid properties were obtained at 
a constant 𝑇𝑟𝑒𝑓 while employing the barotropic equation of state alongside a model to estimate 

the sound speed in the mixture, 𝑐𝑚. We conducted preliminary studies to assess the accuracy of 
the available sound speed expressions for the mixture, including linear, equilibrium, and frozen 
models [10]. In the linear model, presented as follows, 𝑐𝑚 is a linear function of 𝛼, 𝑐𝑣, and 𝑐𝑙. 
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1

𝑐𝑚
2 =

𝛼

𝑐𝑣
2 +

1−𝛼

𝑐𝑙
2  .                                                                                                                                          (11)          

In the equilibrium model, it is assumed that the heat transfer between the phases is infinitely 
fast, and the phases are in equilibrium thermodynamically. Therefore, the latent heat of 
vaporization, 𝐿𝑣, is included in the calculation of 𝑐𝑚 using, 

1

𝜌𝑐𝑚
2 =

𝛼

𝜌𝑣,𝑠𝑎𝑡𝑐𝑣
2 +

1−𝛼

𝜌𝑙,𝑠𝑎𝑡𝑐𝑙
2 +

(1−𝛼)𝜌𝑙,𝑠𝑎𝑡𝐶𝑝𝑙𝑇

(𝜌𝑣,𝑠𝑎𝑡 𝐿𝑣)
2 ,                                                                                              (12)          

where 𝐶𝑝𝑙 is the specific heat of the liquid phase at constant pressure and 𝑇 is the temperature. 

In contrast, in the frozen model, the heat transfer between the phases is assumed to be infinitely 
slow, resulting in the following expression, 

1

𝜌𝑐𝑚
2 =

𝛼

𝜌𝑣,𝑠𝑎𝑡𝑐𝑣
2 +

1−𝛼

𝜌𝑙,𝑠𝑎𝑡𝑐𝑙
2 .                                                                                                                          (13)          

 

Fig 1. Comparison of the speed of sound in water-air mixture as a function of vapor volume fraction predicted by 
linear, equilibrium, and frozen models to the experimental data by Karplus, Gouse and Brown [11, 12].  

 

We evaluated the performance of these models by reproducing the experimental data of Karplus, 
Grouse and Brown published for water-air mixtures at 1 atm [11, 12]. The results presented in 
Fig. 1, show that the linear model significantly over-predicts the sound speed, whereas the 
equilibrium model under-predicts it. According to Fig. 1, the frozen model closely matches the 
experimental data. Therefore, the frozen model was employed in the codes to calculate the 
speed of sound in mixtures. 

In this solver, we used a four-step Runge-Kutta scheme for temporal discretization while keeping 
the Courant-Friedrichs-Lewy, CFL, calculated based on the sound speed to be less than 0.7. 
Moreover, we employed Gaussian TVD schemes to discretize the spatial terms. 

 

 

Advanced code 
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In this code, we add the following energy equation to the set of governing equations presented 
in Eqs. 1-3,  

𝜕(𝜌𝐸)

𝜕𝑡
+

∂(𝜌(𝐸+𝑝)𝑢𝑘)

𝜕𝑥𝑘
=

∂

𝜕𝑥𝑘
[𝜇 (

∂𝑢𝑖

𝜕𝑥𝑗
+

∂𝑢𝑗

𝜕𝑥𝑖
−

2

3

∂𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗) 𝑢𝑖] +

∂

𝜕𝑥𝑘
(𝜆

𝜕𝑇

𝜕𝑥𝑖
),                                           (14) 

where 𝐸 is the total energy and 𝜆 is the thermal conductivity. Unlike in the pressure-based solver, 
here, the evaporation and condensation source terms in Eq. 3 were evaluated using the 
calculated temperature instead of 𝑇𝑟𝑒𝑓. We used Eq. 13 to calculate the sound speed in the 

mixture and obtained the sound speed in the vapor and liquid using the ideal gas law and the 
following correlation by Wilson [13], respectively,  

𝑐𝑙 = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇2 + 𝑎3𝑇3 + 𝑎4𝑇4,                                                                                              (15) 

where 𝑇 is in [˚C], and 𝑎𝑖 are defined as, 

𝑎𝑖 = ∑ 𝑏𝑖𝑗𝑝𝑗3
𝑗=0 ,                                                                                                                                       (16) 

where 𝑝 is in [psia] and 𝑏𝑖𝑗 are the model constants presented in Table 1. 

Table 1. Model constants for the calculation of sound speed in liquid water [13]. 
 𝑏𝑖𝑗 

𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 
 
 

𝑎𝑖  

𝑖 = 0 1402.859 1.050469×10-2 1.633786×10-7 -3.889257 ×10-12 

𝑖 = 1 5.023859 6.138077×10-5 -1.080177 ×10-8 2.477679 ×10-13 

𝑖 = 2 -5.690577×10-2 -1.071154×10-6 2.215786×10-10 -5.088886×10-15 

𝑖 = 3 2.884942×10-4 1.582394×10-8 -2.420956×10-12 5.086237×10-17 

𝑖 = 4 -8.238863×10-7 -6.839540×10-11 9.711687×10-15 -1.845198×10-19 
 

The saturated densities and pressure required by Eqs. 4, 5, and 13 were obtained employing the 
following correlations by Wagner and Pruss [14], 

𝑝𝑠𝑎𝑡 = 𝑝𝑐𝑟 × 𝑒𝑥𝑝 [(
𝑇𝑐𝑟

𝑇
) (𝑎0𝑇𝑟 + 𝑎1𝑇𝑟

3 2⁄
+ 𝑎2𝑇𝑟

6 2⁄
+ 𝑎3𝑇𝑟

7 2⁄
+ 𝑎4𝑇𝑟

8 2⁄
+ 𝑎5𝑇𝑟

15 2⁄
)],              (17) 

𝜌𝑙,𝑠𝑎𝑡 = 𝜌𝑐𝑟[1 + 𝑏0𝑇𝑟
1 3⁄

+ 𝑏1𝑇𝑟
2 3⁄

+ 𝑏2𝑇𝑟
5 3⁄

+ 𝑏3𝑇𝑟
16 3⁄

+ 𝑏4𝑇𝑟
43 3⁄

+ 𝑏5𝑇𝑟
110 3⁄

],                      (18) 

𝜌𝑣,𝑠𝑎𝑡 = 𝜌𝑐𝑟[𝑐0𝑇𝑟
2 6⁄

+ 𝑐1𝑇𝑟
4 6⁄

+ 𝑐2𝑇𝑟
8 6⁄

+ 𝑐3𝑇𝑟
18 6⁄

+ 𝑐4𝑇𝑟
37 6⁄

+ 𝑐5𝑇𝑟
71 6⁄

],                                 (19) 

where  

𝑇𝑟 = 1 −
𝑇

𝑇𝑐𝑟
,                                                                                                                                              (20) 

and 𝑇𝑐𝑟 is the critical temperature,  𝑝𝑐𝑟 is the critical pressure, and 𝜌𝑐𝑟 is the critical density of 
water, which are 647.096 K, 22.064 MPa and 322 kg m-3, respectively. Moreover, 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 
are the model constants presented in Table 2. 
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Table 2. Model constants for saturated density and pressure calculations [14]. 

 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 

𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 
𝑝𝑐𝑟 -7.85951783 1.84408259 -11.7866497 22.6807411 -15.9618719 1.80122502 

𝜌𝑙,𝑠𝑎𝑡 1.99274064 1.09965342 -0.510839303 -1.75493479 -45.5170352 -6.7469445×105 

𝜌𝑣,𝑠𝑎𝑡 -2.0315024 -2.6830294 -5.38626492 -17.2991605 -44.7586581 -63.9201063 
 

In this solver, the mixture properties were defined as, 

𝜌 = 𝛼𝜌𝑣 + (1 − 𝛼)𝜌𝑙,                                                                                                                             (21) 

𝜇 = 𝛼𝜇𝑣 + (1 − 𝛼)𝜇𝑙,                                                                                                                             (22) 

𝜆 = 𝛼𝜆𝑣 + (1 − 𝛼)𝜆𝑙.                                                                                                                             (23) 

The vapor and liquid properties, namely density, viscosity, thermal conductivity and heat 
capacities at constant pressure and density, were determined by fitting polynomials to the NIST 
database. Moreover, the stiffened equation of state [9] was used to relate the state variables,  

𝑝 = 𝑌𝜌𝑅𝑔𝑇 + (1 − 𝑌)𝜌𝐾𝑙𝑇
𝑝

𝑝+𝑝𝑐
,                                                                                                         (24) 

where 𝐾𝑙 = 2684.075 J kg-1 K-1 and 𝑝𝑐 = 786.33×106 Pa. 

In this solver, we calculated the numerical fluxes by employing the HLLC-AUSM Riemann solver 
[15] and the limiter proposed by Barth and Jespersen [16]. Furthermore, we used a four-step 
Runge-Kutta scheme to discretize the temporal terms while setting the maximum value of the 
CFL number at 0.2. Comparing the required CFL numbers, the density-based code is 3.5 times 
more expensive than the pressure-based code.   

 

Validations 

The numerical solvers were validated by simulating two benchmarks: a single bubble collapse 
and a bubble cluster collapse near a flat wall.  

The first benchmark involves an unbounded spherical vapor bubble of radius R0 = 0.4 mm at the 
center of a large spherical domain with a radius of 1250 R0 filled with water. Here, we simulated 
an octant of this domain considering the spherical symmetry of the flow field. Figure 2 shows the 
schematic of this benchmark. We meshed this domain using Cartesian structured grids using two 
numerical grids, coarse and fine, to assess the sensitivity of the results to the grid size. In the 
coarse grid, the cell size, ∆, was 20 μm near the bubble, while the corresponding size in the fine 
grid was 10 μm, corresponding to R0/∆ of 20 and 40, respectively. At the far field boundary shown 
in Fig. 2, the pressure was fixed at 101325 Pa. Furthermore, the symmetry boundary condition 
was used for all other boundaries. The domain was initially filled with liquid water at 298.15 K 
and 101325 Pa. The water pressure around the bubble had a Laplacian distribution at the initial 
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condition. The vapor pressure and density inside the bubble were initially set at 𝑝𝑠𝑎𝑡= 3170 Pa 
and 0.023075 kg m-3, respectively.  

 

Fig 2. Schematic of the computational domain used for simulating single bubble collapse.  

Figure 3 shows the temporal evolution of the bubble radius, R, using the pressure- and density-
based solvers with two numerical grids. The numerical simulation results are also compared with 
the analytical solution proposed for this benchmark [17], which derives the temporal evolution 
of the bubble radius as, 

𝑑𝑅

𝑑𝑡
= − (

2

3

𝑝∞−𝑝𝑣

𝜌
((

𝑅0

𝑅
)

3

− 1))

1 2⁄

,                                                                                                       (25)          

where 𝑝∞ is the far field (ambient) pressure and 𝑝𝑣 is the vapour pressure. The latter is set equal 
to 𝑝𝑠𝑎𝑡 in the present simulations. In Fig. 3, the bubble radius is non-dimensionalized with R0 and 
time, t, is non-dimensionalized by the analytical value of the collapse time, 𝜏𝑅, given by, 

𝜏𝑅 = 0.915𝑅0 (
𝜌

𝑝∞−𝑝𝑣
)

1 2⁄

.                                                                                                                     (26)          

The results show that both solvers predict the analytical results well. Furthermore, the results 
show that meshing an unbounded bubble with 20 cells in the radial direction is sufficient to 
resolve the bubble evolution.   

In the second benchmark, depicted in Fig. 4, we simulated a cloud of bubbles collapsing near a 
flat wall. The cloud consists of 125 bubbles with radii ranging from 0.7 to 1.64 mm, selected 
randomly while keeping the average radius at 0.95 mm. These bubbles were distributed in a cubic 
domain of 21Rc × 21Rc × 21Rc, inscribed in a large rectangle of 4200Rc × 4200Rc × 2100Rc. The 
large bubbles were placed at the center of the cloud. Furthermore, the minimum distance 
between two adjacent bubbles was 0.2 mm to prevent any intersections between the bubbles. 
The domain was filled with liquid water at 293.15 K and 4 MPa with a density of 998.16 kg m-3 
and viscosity of 0.001 kg m-1s-1. The vapor pressure was equal to the saturated pressure, 𝑝𝑠𝑎𝑡= 
2340 Pa. Pressure at far-field boundaries was maintained at 4 MPa, while the zero gradient 
boundary condition was used for density, velocity, temperature, viscosity, and vapor mass 
fraction. Moreover, the bottom boundary was treated as a wall. The computational domain was 
meshed using non-uniform Cartesian structured cells. The cell size was uniform in the small sub-
domain with ∆ = 0.1 mm while gradually stretched out within the large domain. 
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Fig 3. Temporal evolution of the bubble radius predicted by analytical solution and numerical simulations.  

 

Fig 4. Schematic of the computational domain and the initial distributions of the bubbles. Rc is the average radius 
of the bubbles in this cloud.  

This benchmark has been used by Ghahramani et al. and Schmidt et al. to verify numerical solvers 
[6, 18]. Figure 5 shows the impact pressure by the bubble cluster collapse on the wall predicted 
by the present simulations and those from Ghahramani et al. and Schmidt et al. [6, 18]. The 
legend provides the cell size used in each simulation. The pressure was measured by taking the 
average pressure over an area of 10×10 mm2 of the wall beneath the cloud, the hatched surface 
in Fig. 4. The results demonstrate that the impact pressure predicted by the present solvers is in 
the range of those reported in the literature [6, 18]. Discrepancies are believed to be caused by 
bubble distributions at the initial condition. 
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Fig 5. Impact pressure by the collapse of the bubble cluster over an area of 10×10 mm2 of the wall beneath the 
cloud. 

 

Results 

As the first sample environment, we focused on cavitation peening through hydrodynamic 
cavitation within nozzles and narrow channels. The objective was to characterize vortex 
cavitation and identify its origin. It is believed that these coherent cavitating structures are 
responsible for producing abrupt collapses that release strong shock waves [19]. Figure 6 (a) 
shows a snapshot of vortex cavitation formed in a rectangular nozzle obtained using the cost-
efficient code. The cavitating regions are illustrated by plotting the iso-surface of the vapor 
volume fraction at 0.1. Furthermore, Fig. 6 (b) shows an iso-surface of the vorticity magnitude, 
highlighting the turbulent coherent structures. A comparison of Figs. 6 (a) and (b) reveals that 
the horseshoe vortex turbulent structures, generated near solid boundaries close to the nozzle 
throat, coincide with the location of vortex cavitation. This indicates that horseshoe vortices are 
probably responsible for forming vortex cavitation by reducing the local pressure below the 
saturated pressure.  

We used the obtained numerical results to evaluate whether the spatiotemporal characteristics 
of vortex cavitation fall within the resolution of the MHz X-ray microscopy. To this end, we placed 
several numerical probes near the solid boundaries and collected velocity and pressure signals. 
Post-processing of these signals revealed that the length scale of vortex cavitation is on the order 
of millimeters, while its time scale is approximately one millisecond. These characteristics are 
significantly larger than the resolution of the MHz X-ray microscopy, as listed in Table 3. This 
implies that resolving these structures with MHz X-ray microscopy would require extensive 
experimental scans to discern vortex cavitation. 
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Fig 6. Iso-surfaces of (a) the vapor volume fraction, color-coded by local pressure, and (b) vorticity magnitude, 
color-coded by the flow velocity. 

Table 3. MHz X-ray microscopy resolution. 

Continuous Recording Capacity [frame] 128 

Recording Speed [Mega frame per second] 1.1 

Recording duration [microsecond] 116 

Field of View [millimeter] 0.8-1.3 
 

Following similar analyses for different nozzles and the study of various physical phenomena, 
such as cavitation inception and pulsing cavitation, we concluded that sample environments 
involving hydrodynamic cavitation are not suitable for MHz X-ray microscopy measurements. 
Preliminary numerical studies revealed that the resolution of this novel technique falls in the 
spatiotemporal characteristics of cavitation peening via cavitation bubbles. In this form of 
cavitation peening, a small bubble is generated near a material by discharging a laser pulse into 
the liquid. The resulting significant pressure gradient across the bubble interface drives its 
implosion, releasing strong shock waves. These shocks introduce compression stress in the 
material, leading to surface pits. This technique has been proven effective for peening various 
materials [20]. However, the dynamics of bubble collapse remain poorly understood, as they 
involve small spatial and temporal scales that are beyond the reach of conventional 
measurement techniques.  

Theoretically, as indicated by Eq. 26, the lifetime of a cavitation bubble is proportional to its initial 
size and the thermodynamic conditions of the flow. This suggests that cavitation bubbles can be 
easily tailored to match the resolution of MHz X-ray microscopy, making this sample environment 
well-suited for this project. Moreover, the generation and collapse of cavitation bubbles using 
lasers are highly controllable and can be synchronized with the measurement technique, 
minimizing the experimental scans needed to capture the targeted features.  
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We used the numerical codes to characterize cavitation bubble dynamics, focusing on identifying 
key features during the bubble collapse for further investigations with MHz X-ray microscopy. 
Simulations were performed for cavitation bubbles in water near a flat wall under a broad range 
of thermodynamic conditions. Figure 7 shows a schematic of one such simulation, where a 
spherical water vapor bubble is generated above a flat wall. Figure 8 illustrates the spatial 
distributions of pressure (non-dimensionalized by the liquid pressure) and the velocity 
component perpendicular to the wall (uz) at a cross-section of the computational domain. Here, 
the bubble shape is indicated by iso-lines of 𝛼 (white lines) superimposed on the velocity and 
pressure contours. Additionally, the closed black line in Fig. 8 (a) shows the initial bubble shape.  

 

Fig 7. Schematic of the computational domain used to study cavitation bubble above a flat surface. 

 

Fig 8. Spatial distributions of the pressure (left of each panel) and velocity component perpendicular to the wall 
(right of each panel) at a cross-section of the computational domain at 𝑡/𝜏𝑅  values of (a) 1.002, (b) 1.01, (c) 1.05, 
(d) 1.7, and 1.74. The closed white and black lines show the current and initial shapes of the bubble, respectively. 

The results show that the bubble shrinks for 𝑡/𝜏𝑅 < 1, remaining nearly symmetric during this 
phase. The pressure below the bubble is lower than the above due to the influence of the solid 
boundary, creating an asymmetrical pressure distribution. This asymmetry generates a re-
entrant jet directed toward the wall, causing the bubble to elongate and move closer to the 
surface. As the re-entrant jet pierces the bubble early in its collapse, the bubble transforms into 
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a bowl-like structure (Fig. 8 (a)) and subsequently evolves into a toroidal shape (Fig. 8 (b)). After 
the first collapse, an outward-propagating compression wave generates a low-pressure region, 
prompting the bubble to re-evolve. The re-entrant jet then impinges on the surface, exerting 
another impact pressure. Following this, as displayed in Fig. 8 (d), the elongated bubble 
fragments into pieces. The wall-attached bubble collapses before the detached bubble, as seen 
in Fig. 8 (e), imposing additional impact pressures on the surface.  

These analyses show that cavitation bubbles exhibit complex physical features with small 
spatiotemporal scales, making them a suitable sample environment for MHz X-ray microscopy. 
Many of these phenomena, particularly those occurring after the first collapse (𝑡/𝜏𝑅 > 1), are 
not understood well. These features directly influence the impact pressures and the effectiveness 
of cavitation peening. In Task 3.4, the MHz X-ray microscopy technique will be used to gather 
data for validating the obtained numerical results. Additionally, the developed models and the 
obtained results have been prepared into a journal paper, which will be submitted shortly.  

 

Conclusions 

In Task 3.2, we developed two numerical solvers with varying computational demands: a cutting-
edge yet resource-intensive code and a low-cost solver to simulate cavitating flows. Using a 
density-based approach, the former code resolves all the flow characteristics, including acoustic 
waves, with small numerical steps. In comparison, the cost-effective code is based on the 
pressure-based approach while considering the fluid compressibility in the pressure-velocity 
coupling, being stable for relatively large computational time steps. These codes were 
successfully validated against theoretical predictions and data from the literature. We used these 
codes to select and optimize the sample environments for the MHz X-ray microscopy, namely 
cavitating nozzles and cavitation bubbles. The obtained results were fed into the ML algorithm 
developed in Task 2.3. 
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