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Abstract

Executive Summary

This report summarizes the development of machine-learning frameworks to reconstruct 3D
movies (4D) from the data provided by the MHz-XMPI instrument developed by WP1. First, we
present our 4D approach, named 4D-ONIX!, which was used to analyze and retrieve the first MHz
4D movie with XMPI of a binary droplet collision using the WP1 prototype?. This approach, which
has been accepted for publication in Communications Engineering, has been validated using
simulated data and experimental data provided by conventional time-resolved tomography at
synchrotron radiation facilities. We also report the limitations of 4D-ONIX and our current
developments in adapting state-of-the-art 4D machine-learning approaches to overcome them. Our
recent 4D framework, which is based on a machine-learning architecture known as Hexplane, will
be used to address the data coming from WP3.

In the first section, we describe the 4D-ONIX approach and architecture, the code of which will
be publicly available upon publication. The second section describes the application to MHz-
XMPI data coming from WP1. The third section analyzes the impact and limitations of 4D-ONIX.
Section 4 describes our novel developments using state-of-the-art 4D machine-learning
approaches to overcome key limitations of 4D-ONIX.
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1. 4D-ONIX

4D-ONIX is a self-supervised deep learning model designed to reconstruct 4D (3D + time) data
from sparse X-ray projections acquired using the MHz-XMPI instrument developed by WP1. As
shown in Figure 1a, unlike traditional time-resolved tomography, which relies on sample rotation
to collect hundreds of projections, XMPI enables volumetric imaging without rotation by
simultaneously capturing multiple projections using split beamlets?*. However, XMPI was limited
to recording only two per timestamp initially, as initially implemented by WP12. This limited
number of projections makes conventional reconstruction methods ineffective.

4D-ONIX has been developed to address this challenge by integrating several key factors: (i) using
state-of-the-art machine learning concept (neural implicit representation) to model the refractive
index as a continuous function of space and time, (ii) using self-supervised learning to learn from
only recorded projections, eliminating the need for ground truth 3D/4D data, (iii) incorporating the
physics of X-ray interaction with matter into the model, (iv) learning latent sample features by
generalizing across all timestamps and experiments, and (v) applying adversarial learning to ensure
spatial and temporal consistency.
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Figure 1: (a) Conceptual illustration of the prototype for MHz-XMPI setup used to collect the data?. The inset shows
the goal of 4D-ONIX to reconstruct direct 4D from 2D projections. (b) Overview of the 4D-ONIX approach with the
key components to reconstruct 4D from two projections.
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As shown in Figure 1b, the architecture of 4D-ONIX consists of three main components: an
encoder, an Index of Refraction (IoR) generator, and a discriminator. The recorded projections
first pass through a convolutional neural network encoder, which transforms the 2D images into
stacks of downscaled feature maps. These extracted features are then processed by the IoR
generator, which reconstructs the 3D representation at any spatial-temporal point. A physics-based

RN Funded by .
LN the European Union




D\SQOC MHz - Tomoscopy

forward propagation model is applied to predict projections from different angles within the plane
of the incoming X-ray beam. Finally, the discriminator helps to optimize the reconstruction over
novel/predicted views by minimizing the differences between real and predicted projections.

2. 4D-ONIX on MHz-XMPI

The performance of 4D-ONIX was evaluated using both simulated and experimental MHz-XMPI
data of water droplet collisions, demonstrating its ability to reconstruct high-resolution 4D
information from highly sparse projections.
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Figure 2: 4D-ONIX results on simulated data of water droplet collisions.

Simulated Data

As aforementioned, Figure la illustrates an experiment conducted at EuXFEL to study the
collision dynamics of water droplets, capturing two X-ray projections spaced 23.8° apart. For
validation, 4D data of water droplet collisions were simulated using the incompressible Navier-
Stokes equations, and two projections were generated to match the geometry of the EuXFEL
experiments.
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4D-ONIX was applied to reconstruct the full 4D dynamics of the simulated water droplet
collisions, with the results presented in Figure 2. The reconstruction results were evaluated using
Mean Squared Error (MSE) and Dissimilarity Structure Similarity Index Metric (DSSIM). As can
be seen, 4D-ONIX successfully reconstructed the core stages of water droplet collision, providing
invaluable insights for studying the 3D dynamics of the collision process. This reconstruction is
based on 16 simulated experiments of water droplet collisions, each containing 75 timestamps and
two projections 23.8° apart.

Experimental Data

Following the validation using simulated data, 4D-ONIX was applied to experimental MHz-XMPI
data collected at EuXFEL, where water droplet collisions were imaged at a frame rate of 1.128
MHz using single X-ray pulses. The preprocessed projections from the two detectors and the
corresponding reconstructions generated by 4D-ONIX are shown in Figure 3.
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Figure 3: 4D-ONIX results on experimental MHz-XMPI data of water droplet collisions collected at EuXFEL.

Despite the extreme sparsity of the recorded projections, 4D-ONIX successfully reconstructed a
full 3D movie of the collision, capturing the evolution of the droplets at microsecond timescales
together with micrometer resolution. The reconstructed movie achieved a temporal resolution of
0.89 ps, which is three orders of magnitude faster than conventional time-resolved tomography®
demonstrating the potential of 4D-ONIX for MHz-rate 4D imaging.

However, the retrieved reconstructions are subject to certain limitations. First, due to experimental
constraints, only two sequences of the droplet collision were captured, with minimal variation in
sample orientation, restricting the diversity of training data. Second, the recorded projections
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contained noise and imaging artifacts, particularly from the second detector, which introduces
imperfections in the reconstructed 4D movies. This can be mitigated in future work by
incorporating additional projections and improving data quality using the new setup coming from
WP1.

3. 4D-ONIX impact and limitations

The development of 4D-ONIX represents a step forward in 4D X-ray imaging, enabling high-
resolution MHz-rate reconstructions from extremely sparse data. It opens up new opportunities for
studying ultrafast processes in a variety of fields, including fluid dynamics and material science.
The methodology can also be extended to other time-resolved X-ray imaging techniques, such as
phase contrast imaging and coherent diffraction imaging, by modifying the underlying physical
propagation model.

Despite its advantages, 4D-ONIX has several limitations that hinder its applicability to the MHz-
TOMOSCOPY project. One of the primary challenges is its computational complexity. The
integration of multiple convolutional neural networks increases the computational cost, making
real-time or online reconstructions impossible. For example, the reconstruction presented in the
previous section was retrieved after several days of training on an NVIDIA A100 GPU with 80
GB memory. Another limitation is the requirement for multiple experiments of similar dynamic
processes. Since 4D-ONIX learns from generalizing across multiple timestamps and experiments,
it requires acquiring similar dynamics over several experiments. However, obtaining such data can
be extremely difficult because of i) the highly stochastic nature of some physical processes, which
makes them challenging to reproduce, and ii) the limited access to facilities like EUXFEL. Besides,
the accuracy of 4D-ONIX reconstructions is inherently constrained by the sparsity of the input
data. For more complex dynamics, additional projections and experiments would be necessary to
enhance reconstruction fidelity. Although the model has been successfully applied to water droplet
collisions, its applicability to more complex materials and dynamics remains to be explored.

To address these challenges in the context of MHz-TOMOSCOPY, we have developed an
improved 4D machine-learning framework based on Hexplane, as described in the next section.
This new framework aims to enhance reconstruction quality while reducing computational
demands. Additionally, future improvements will explore the integration of Physics-Informed
Neural Networks® to impose constraints derived from known physical laws. This will not only
improve reconstruction accuracy but also enable interpolation between timestamps, enhancing the
temporal resolution of reconstructed 4D movies beyond the acquisition rate of the setup.

4. Beyond 4D-ONIX: Hexplane for 4D X-ray imaging

In this section, we present X-Hexplane, a state-of-the-art 4D reconstruction algorithm tailored to
fulfill the needs of the MHz-TOMOSCOPY project and overcome critical limitations of 4D-ONIX.

X-Hexplane, an extension of Hexplane’, adopts a tensorial approach and processes 4D dynamic
sample data efficiently. Representing dynamic samples as an explicit voxel grid of features
significantly reduces memory consumption through tensorial factorization. Specifically, X-
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Hexplane decomposes a 4D space-time grid into six feature planes spanning each pair of
coordinate axes (e.g., XY, ZT). This factorization approach reduces the space-time complexity
from O(n3T) to O(n?F), where n, T, and F denote the spatial resolution, temporal resolution, and
feature size, respectively, leading to a significant reduction in memory footprint. Figure 4 provides
an overview of the X-Hexplane approach. First, a 4D point in space-time is projected onto each of
these feature planes, generating six feature vectors that are then aggregated into a fused feature
vector. Second, a tiny multilayer perceptron is used to regress the IoR at that point from the fused
feature vector. After computing the value for all points in space-time, 2D projections can be
rendered via a line integral along an X-ray propagation direction, assuming projection
approximation. For that, we have included the X-ray-mater interactions in our approach.

To address the sparse-view challenge inherent to XMPI, X-Hexplane ensures information
consistency across space and time by sharing low-rank tensors over the space-time grid. This
overcomes the problem of modeling each timestep independently as done, which fails to provide
sufficient information for high-quality and consistent 4D reconstruction. By sharing features
across timesteps, X-Hexplane achieves temporal coherence. The unique capabilities of X-
Hexplane are achieved by: i) incorporating the physics of X-ray propagation into the model, ii)
using a tensorial representation of the dynamic process to reduce memory usage and accelerate the
training and reconstruction process, and iii) sharing features across time to overcome the sparse-
view limitations. When applied to XMPI, X-Hexplane enables efficient and high-quality 4D
reconstructions in a timely manner (around 100 times faster than 4D-ONIX). To validate the
capabilities of X-Hexplane for MHz-TOMOSCOPY and compare it to 4D-ONIX, we used the
simulation dataset presented in Section 2.
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Figure 4: Overview of X-Hexplane. X-Hexplane contains six feature planes spanning each pair of coordinate axes
(e.g. XY, ZT). Rays are marched from each pixel of the captured images. Points are sampled along with the rays. For
any point in space-time, it is projected to six planes. Features extracted from paired planes are multiplied and then
concatenated (green box). IoR at certain points are regressed from fused features using a tiny MLP.

Our new approach can train and retrieve results comparable to 4D-ONIX while requiring
only 10 minutes to train on the same dataset instead of several days as required by 4D-ONIX.
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An optional Generative Adversarial Network (GAN) architecture is also introduced to improve the
precision of the reconstruction results. The GAN framework consists of two competing networks:
X-Hexplane, which works as a generator, and a convolutional-neural-network discriminator,
which learns from the ground truth data and attempts to differentiate between the input projections
and the generated ones by X-Hexplane. The inclusion of the GAN will increase the training time
to several hours, as the discriminator requires more computational resources, while X-Hexplane
without GAN will only take 10 minutes. The discriminator was trained to learn from the ground
truth information available at specific angles (0 and 23.8 degrees) and tasked with assessing the
novel views generated by the X-Hexplane. This adversarial process significantly improved the
output of X-Hexplane at the cost of longer training time.
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Figure 5: Reconstruction of X-Hexplane with GAN compared with ground truth for different time frames.

The adversarial process forced the generator to improve its outputs and produce more self-
consistent and realistic reconstructions. The results in Fig. 5 demonstrate that the X-Hexplane with
GAN successfully reconstructed the droplet collision process with high precision. It preserved the
correct shape and produced consistent reconstructions across all viewpoints. Furthermore, the
overall dynamics of the droplet, including the collision outcomes, closely matched the expected
results based on physical simulations based on physical simulations.
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In conclusion, the X-Hexplane offered a fast solution for sparse view 4D reconstruction tasks. The
incorporation of a GAN significantly improved the reconstruction quality, yielding results that
were more accurate and physically consistent with the expected droplet behavior, albeit at the cost
of increased training time. These results underscore the potential of XMPI for rapid 4D imaging,
especially when paired with advanced machine-learning techniques. The improvements in
accuracy and shape preservation achieved with the GAN-based method indicate that XMPI,
combined with adversarial training methods, holds great promise for real-time 4D imaging of
dynamic processes like fluid dynamics. The 4D nature of X-Hexplane, combined with its
incorporation of X-ray physics, presents exciting opportunities for further development. The
temporal information derived from reconstructions can be leveraged to enhance model accuracy
by introducing additional constraints. For instance, if the sample dynamics follow a partial
differential equation (PDE), integrating a PDE-based loss term within the loss function using
Physics-Informed Neural Networks (PINNs)®8 can not only improve alignment with physical laws
but also facilitate interpolation between dynamic states. This approach enables the generation of a
continuous 3D time-lapse reconstruction with a temporal resolution exceeding the original
tomography experiment's recording rate. Finally, X-Hexplane offers adaptability and flexibility,
making it applicable to a broad range of time-resolved imaging experiments and different spectral
domains. It can be extended to techniques such as coherent diffraction imaging®, phase-contrast
imaging'®, MRI, and ultrasound imaging'?, where the propagation model is explicitly known.

We envision for the rest of the MHz-TOMOSCOPY project within WP2-Task 2.3 to:

1. Apply X-Hexplane to the data acquired from WP3 with the new prototype provided by
WP1. The increased number of projections of the new setup and large angular diversity
will enable the use of X-Hexplane without GAN based on our simulations and provide fast
reconstructions within a few minutes from a single MHz movie.

2. We will develop a validation protocol to evaluate 4D reconstruction quality (resolution and
accuracy) without ground truth based on ablation studies by extending current ideas used
in cryo-electron microscopy for 3D evaluation.

3. As suggested in the project review report and evaluation sessions, we will assess the
application of X-Hexplane to, e.g., standard tomography and its application to the
biomedical sector (medical CT) and security (airport scanners).

4. We will aim to establish collaborations to extend the use of X-Hexplane to other probes
like MRI or ultrasound.
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