b\\'(/ MHz - Tomoscopy

Project information

D2.2

Fast Data Interface (Software)

Project full title

MHz rate mulTiple prOjection X-ray MicrOSCOPY

Project acronym

MHz-TOMOSCOPY

Grant agreement no.

101046448

Instrument EIC Pathfinder Open
Duration 42 months
Website https://tomoscopy.eu/

Deliverable information

Deliverable no.

Deliverable 2.2

Deliverable title

Fast Data Interface

Deliverable responsible

Ing. Peter Szeles

Related Work-Package/Task | Task 2.2

Type (e.g. report; other) Report, Software
Author(s) Ing. Peter Szeles
Dissemination level Public
Document Version 1.0.0

https://tomoscopy.eu/

D\\.Q MHz - Tomoscopy

Date 31t of May 2024

Download page https://git.xfel.eu/pszeles/fatra

Document information

Version | Date Author(s) Comment

no.

1.0.0 10.05.2024 | Peter Szeles First full version
Abstract

FATRA (FAst Train Review Aplication) empowers researchers by providing near real-time
visualization of scientific camera data streams. It tackles challenges associated with manual data
access from Shimadzu cameras at the MHz-Tomoscopy project. FATRA leverages the European
XFEL's Karabo Framework and PyQT for a user-friendly interface. Key functionalities include real-
time monitoring, past data review, convenient playback, data export, and offline analysis. While
a 15-30 second latency exists, FATRA strives to minimize delays while offering a streamlined user
experience.

Executive Summary

FATRA addresses the need for efficient data visualization in MHz-Tomoscopy experiments
using Shimadzu cameras. It replaces a cumbersome manual process with a user-friendly
application for real-time and offline analysis of scientific camera data streams. FATRA offers
significant improvements over its predecessor through a modular design, multithreading, a
streamlined interface, dedicated detector view, and offline analysis capabilities. It successfully
facilitated the Megahertz imaging experiment at the European XFEL.

https://git.xfel.eu/pszeles/fatra

D\\.({/ MHz - Tomoscopy

Table of Contents

1. FATRA (FAst Train ReView ApliCation).......ccccuieiiiiiiiiiie sttt eeaae e 4
1.1. Challenges of Manual Data ACCESScccccuuieieriiiieeieiiiie e esiieee et e e s sire e e e saraee e s saeneeeenas 4
1.2. Main features and functionalities of FATRAccouiiiiiiiiiieeeieeeeeee e 4
1.3, Latency CoNSIderatioNs: iuieeeieiiie e eriieee et e e e e s e e st e e s s sabae e e e sabaeeeenbaeeeeenas 5
1.4. The development process and lifeCyCle.......couiiiiiiiiiiiiiiiiie e 5
1.5. The structure and architecture of FATRA QPP ...uueiiiiiiieiiiiiieeeenieeesssivee e seeee e ssveeee e 7
1.6, ThE @NA-USEIS.cnniiiiiiiieiiee ettt ettt e st e s bb e e s bt e e sabe e e sase e e eabeeeenseesanee 9
1.7. Thename and l080ccccuuiiiiiiiiiee ettt e e e et e e s e srae e e e sabae e e enasraeeeenns 9
1.8. Python packages and frameworks used in the software........cccccceeecvvveereeiienccccnieeeneen. 9
1.9. Installation and USAEE......ccocvuiiiiiiiiie ettt ettt e e e e e e s saae e e s eaeeeeeena 10
1.10. Issues, limitations and areas that require improvementcccccevcveeeeiicieeececiveeeene 10

D\\./ MHz - Tomoscopy

1. FATRA (FAst Train Review Aplication)

The MHz-Tomoscopy project utilizes Shimadzu cameras to capture sample activity during
experiments in multiprojectional way. Ideally, researchers would see these camera feeds almost
instantaneously within the control room. However, achieving true simultaneity presents
technical challenges.

1.1. Challenges of Manual Data Access

Recorded frames by Shimadzu high speed cameras are transferred to the XFEL’'s Online cluster.
This approach caused delays due to:

e Camera speed limitations and data transfer SW APl which causes more then 15 seconds
delay between the creation of data and finished transfer of data to the online cluster.

¢ User needs to manually access the data.
e Multiple data streams requiring constant monitoring across separate windows.
This cumbersome process led to information overload and hindered efficient analysis.

FATRA (Fast Train Review Application) goes beyond fast data review. It empowers researchers in
the MHz-Tomoscopy project, and any experiment which uses shimadzu, Jungfrau or similar
cameras with near real-time visualization of scientific camera data streams, nicknamed "trains."

FATRA leverages the European XFEL's Karabo Framework for seamless integration and
utilizes the PyQT library for a user-friendly graphical user interface (GUI).

1.2. Main features and functionalities of FATRA

e Real-time monitoring: Users can monitor the live output from multiple cameras
simultaneously within the FATRA interface.

e Past data review: FATRA allows users to review previously captured data trains saved in
local cache, comprising collections of images.

e Convenient playback: Past data trains can be conveniently replayed in a video format for
further analysis or visualization purposes.

e Data export: FATRA offers functionalities to export the captured videos, facilitating their
seamless download for archival or in-depth analysis outside the control room
environment.

b\\.((/ MHz - Tomoscopy

e Offline analysis: The user (vith valid access rights) can connect to the Online clusters
proposal folder where every data mesured by the experiment is placed and view the past
data in similar window like the online view.

1.3. Latency Considerations:

It is important to acknowledge that the term "live" may not be entirely accurate. Processing
delays exist due to:

e Camera processing time
e Data transfer through an intermediary PC
e Network communication limitations

These factors contribute to a latency of approximately 15-30 seconds between image capture
and display on the screen. The application strives to minimize this delay while providing a user-
friendly, streamlined interface for near real-time visualization.

1.4. The development process and lifecycle

The development of FATRA began with a prototype application called the "fast data interface."
Here's a breakdown of the key stages:

1. Initial Planning and Environment Setup:

¢ Requirements Gathering: We started by gathering detailed software requirements to
understand the functionalities needed for the final application.

e Environment Analysis: The environment where FATRA would be hosted and used was
carefully analyzed to ensure compatibility and efficient operation.

¢ Version Control and Task Management: A dedicated repository was created on XFEL's
GitLab (https://git.xfel.eu/pszeles/) to manage code versions and track development
tasks.

2. Backend Development and Test Environment Creation:

e Backend Focus: Initial development focused on building the core functionalities of the
application (backend).

o Data Stream Simulation: Since XFEL access wasn't readily available, a method to simulate
camera data streaming was crucial. We successfully achieved local streaming of past XFEL
data using the "extra-data" Python library.

3. User Interface (GUI) Development and Demo Creation:

https://git.xfel.eu/pszeles/

3\3.0(MHz - Tomoscopy

e GUI Design and Implementation: With a functional backend, the development of the
graphical user interface (GUI) commenced.

e Demo Completion and Testing: By the end of 2023, a working demo version with a
simulated environment and GUI was completed.

4. Demo Testing, Redesign, and FATRA is Born:

o Testing and Evaluation: January 2024 saw the demo version tested at the XFEL online
cluster. While functional, numerous bugs were identified.

o Refined Architecture and Redesign: Leveraging the demo's insights, a completely new
architecture and design structure were created (refer to the figure 1. for details).

o FATRA Emerges: This major overhaul led to the application being christened FATRA with
a new GitLab repository established.

5. FATRA's Feature Implementation:
The new architecture introduced significant improvements:

e Modular Design: Separation of backend, frontend, and simulator into distinct
applications.

o Multithreading: Blocking processes were multithreaded for enhanced performance.

e Streamlined Interface: A single main window allows adding backend connections for data
streaming.

o Dedicated Detector View: Users can open a separate window to visualize and analyze
detector data.

o Offline Analysis: FATRA facilitates offline analysis by connecting to past data folders on
the online cluster.

e Real-time and Offline Visualization: Both real-time and offline data can be visualized in
various formats, including train view, waterfall view, and intensity plots.

o Data Navigation: A tree view helps users navigate the key-value structure of incoming
data (Python dictionary type) to select the relevant detector data.

6. Deployment and First Experiment:

Following successful implementation, FATRA's backend and GUI were installed at XFEL, paving
the way for its first real-world application:

o Experiment Integration: FATRA was successfully used in the Megahertz imaging
experiment ([5157] Megahertz imaging of liquid-bubble-particle multi-time scale
interaction dynamics in ultrasonic fields, Main proposer: Prof. Dr. Jiawei Mi, April 2024)

b\\.((/ MHz - Tomoscopy
1.5. The structure and architecture of FATRA app

A well-defined software architecture plays a critical role in application performance. After
identifying bottlenecks in the demo version, a key focus was establishing efficient communication
channels between the backend, frontend, and separate online windows.

Figure 1 illustrates the communication architecture:

¢ Main Communication Channel: A central channel exists between the frontend and
backend, utilizing ZeroMQ's "Request-Reply" pattern.

¢ Adding a Backend: When a user adds a backend component, the frontend sends a "Add
Backend" request to the backend.

o Backend Processing: The backend receives the request, creates a new detector Karabo
client instance, and establishes two separate communication channels:

o ZMQReply Channel: This dedicated channel facilitates communication back to the
frontend with processed data.

o ZMQ Publish Channel: This channel allows newly created detector windows on
the frontend to subscribe and receive streamed data.

o Data Flow: Upon receiving data, the detector Karabo backend streams it via the ZMQ
publish channel. The frontend retrieves the data, processes it, and visualizes it
accordingly.

MHz - Tomoscopy

\ FATRA Communication Architecture

MAXWELL Online Cluster / KARABO server [Connected devices from experimental hall

BACK END

Karabo BE 1 Karabo BE 2 Karabo BE Nth

Karabo Bridge Client Karabo Bridge Client

Karabo Bridge Client

ZMQ REP ZMQ REP

ZMQ server REP f Handle request

FRONT END

MAIN WINDOW [ZMQ server REQ / send
request to server

GUI of DEVICE 1 GUI of DEVICE 21 GUI of DEVICE 2.2 GUI of DEVICE Nth

RECEIVE
DATA
ZMQ SUB

RECEIVE
DATA
ZMQ REQ [} ZMQ SUB

PyQT window, QtGraph

Process setup (device
name, property, ...)

Process setup (device
name, property, ...)

Process setup (device
name, property, ...)

Process setup (device
name, property, ...)

.

Fig. 1. The FATRA communication architecture which was used for development and is practically the base of data
catching, streaming inside the fatra and visualizing in the GUI.

D\\.['/ MHz - Tomoscopy

1.6. The end-users

An end user can be anyone who needs to review online or offline data transmitted via
data streams using ZMQ. FATRA's applications extend beyond EU XFEL experiments, offering a
wider range of use cases.

1.7. The name and logo

The FATRA logo, for the Fast Train Review Application developed by the University of
Pavol Jozef Saférik in KoSice, Slovakia, combines its technical function with a nod to its origin. The
rotated letter "F" resembles a mountain peak, reflecting Slovakia's mountainous landscape,
especially the mountains called Fatra®. The red section represents the application's backend, and
the grey edges symbolize the data stream flowing from experimental hall sensors to the data
analysis system.

Fig. 2. FATRA logo

1.8. Python packages and frameworks used in the software

Used open-source python libraries.

1. numpy: https://numpy.org/devdocs/user/index.html#tuser NumPy is an open-source
numerical computing library for Python.?

2. karabo_bridge: Karabo Bridge is part of the European XFEL software suite, an open-
source Python library for accessing saved data produced at European XFEL.
Documentation3

Lhttps://en.wikipedia.org/wiki/Ve%C4%BEk%C3%A1_Fatra_National_Park
2 https://numpy.org/devdocs/user/index.html#user
3 https://github.com/European-XFEL/karabo-bridge-py#how-to-use

https://en.wikipedia.org/wiki/Veľká_Fatra_National_Park
https://numpy.org/devdocs/user/index.html#user
https://github.com/European-XFEL/karabo-bridge-py#how-to-use

D\\.["/ MHz - Tomoscopy
3.

extra_data: Extra-data is a Python library for accessing saved data produced at
European XFEL.#

4. pyqtgraph: PyQtGraph is an open-source scientific graphics and GUI library for Python.>

5. opencv-python: OpenCV (Open Source Computer Vision Library) is an open-source
computer vision and machine learning software library which we use for image and
video processing.®

6. PyQt5: Qtis a full development framework with tools designed to streamline the
creation of applications and user interfaces for desktop, embedded, and mobile
platforms.’

7. pyinstaller: Pyinstaller bundles a Python application and all its dependencies into a
single package. The user can run the packaged app without installing a Python
interpreter or any modules.?

8. coverage: check the code coverage.’

9. flake8: Python linter for checking the code style.*?

1.9. Installation and Usage

The installation and usage guide is placed at the project’s gittlab repository in

README.md*%.

1.10. Issues, limitations and areas that require improvement

For future improvement, we propose to integrate several image correction algorithms

into the FATRA GUI. These algorithms could include flat-field correction, dark-field correction,
and iterative reconstruction to address diffraction artifacts in the frames.

4 https://extra-data.readthedocs.io/en/latest/index.html

5 https://pyqtgraph.readthedocs.io/en/latest/

% https://docs.opencv.org/4.8.0/d1/dfb/intro.html

7 https://doc.qt.io/qt-5/

8 https://pyinstaller.org/en/stable/

% https://coverage.readthedocs.io/en/7.4.0/

10 https://flake8.pycqa.org/en/latest/#

11 https://git.xfel.eu/pszeles/fatra/-/blob/main/README.md

10

https://extra-data.readthedocs.io/en/latest/index.html
https://pyqtgraph.readthedocs.io/en/latest/
https://docs.opencv.org/4.8.0/d1/dfb/intro.html
https://doc.qt.io/qt-5/
https://pyinstaller.org/en/stable/
https://coverage.readthedocs.io/en/7.4.0/
https://flake8.pycqa.org/en/latest/
https://git.xfel.eu/pszeles/fatra/-/blob/main/README.md

Milestanes

Open 4 Closed Al & Dua soon

Prototype version

§ complete

Prié release varsion

Beta version 0ux.0

Release Candidate ([RC) for vesricn 1,0.0

0% complete

%% complete

Je5ts 0% complete

Fig. 3. Gitlab Milestones for SW Developlent.

eoe Tomoscopy - Fast Data Interface

Start the simulato

| Connected to: tcpi/92.168.131:4546

Milesicng

C

lose Milesione

Close Milestone

Streaming Url

1cp:/[192.168.1.31:4546

Available devices:

SPB_EHD_HPVX2_1/CAM/CAMERA
SPi

SPB_EHD_HPVX2_2/CAW/CAMERA:daqOut
SPB_EHD_HPVX2_3/CAMICAMERA
SPB_EHD_HPVX2_3/CAMICAMERA:daqOut

Device property:

dataimage.pixels

Refresh frequency:

01

Detector 1

250, 400)
Export selected train to video

Detector 2

Detector 3

Detector 4

No Camera Available

Fig. 4. The prototype version of Fast Data Interface software.

11

MHz - Tomoscopy

Peter Szeles * FATRA

FATRA &

Project ID: 4490 [3

N\

- 53 Commits ¥ 2 Branches <7 0 Tags [23.4 MB Project Storage

FAst Train Review Application

o~ Yr Star | 0 % Fork | 0

&

main v fatra /| + -~

[README | | 38 MIT License

Baapp
Eadocs

Eaimg

Ellogs
Eatests

[5 .flake8

4 .gitignore
& gitlab-ci.yml
EJ LICENSE

=+ README.md
2 fatra.py

[4 fatra.spec

& requirements.txt

remove unnecessary elements from screen and change the fixed pixel sizes to percentages.
“** Peter Szeles authored 2 weeks agoe

() | 880aatbe | B

Fratie | WeoE || &~

[3) cl/cD configuration [Add CHANGELOG [Add Kubernetes cluster

[Add CONTRIBUTING |

[Add Wiki |

Last commit

remove unnecessary elements from screen and change ...
FATRA communication architecture pdf
Development and Bugfix at SPB/SFX
Development and Bugfix at SPB/SFX
pushing a lot of changes after a while
pushing a lot of changes after a while
pushing a lot of changes after a while
Development and Bugfix at SPB/SFX
setting up the project structure
Development and Bugfix at SPB/SFX
continue seting up the project structure
Development and Bugfix at SPB/SFX

Development and Bugfix at SPB/SFX

Fig. 5. The Gitlab repository of the FATRA software.

Last update

2 weeks ago

2 months ago

2 weeks ago

2 weeks ago

1month ago

1month ago

1month ago

2 weeks ago

3 months ago

2 weeks ago

3 months ago

2 weeks ago

2 weeks ago

12

FATRA (on exflonciosdesyde)

About Start the simulator Stop simulators Settings Show logfile

Online Analysis

Running Simulators:

Karabo endpoint
tepiffiocalhost:5551
Add Backend

tep://10.253.1.63:54456 Remove Backend

Permission denied for accessing path /gpfs/exfel/exp/SP

offline Analysis
Find proposal by number
5157
Find proposal
Path for proposal:
Igpfs/exfel/exp/SPB/202401/p005157
Load
Run selection
+ scratch
- raw
+ 10151
+ 10008
- 10145
RAW-R0145-DA02-500004.h5
Loaded data:

Karabo endpolat window: tcp://10.253.1.63:54456 (0 exflonc105.desy.de)

Toggle Auto play Download Video

Data Selection
+ CONTROL
+ ERRATA
+ INDEX
= INSTRUMENT
- SPB_EHD_MIC
- CAM

- HPVX2_1:daqOutput

Data Selection

- SPB_EHD_MIC/CAM/
+ data.image.type
+ data.image.dimen..

+ data.image.dimen...

+ data.image.rOIOff...

+ data.image.binning

+ data.image.rotation

+ data.image.flipX

+ data.image.flipY

+ data.image.bitsPer.
mage.encodi

v Normalize train images

v Auto play trains
ROl | Menu RAY

- data

maEc

dims
+ dimTypes
+ encoding
+ bitsPerPixel
prerabbon
Load Data
+ Mean Intensity
Median Intensity
Total Intensity
Standard Deviation of Intensity
Variance of Intensity
Minimum Intensity
Maximum Intensity
Range of Intensity

Calculate

Fig. 6. FATRA GUI running on Online Cluster.
The main window (left), the Online detector window (right) and the oflline analysis window (middle).

Export train to video

13

§.0 MHz - Tomoscopy

& UTM File Edit View Window Help

® ©® O Il <9 Debian1 (Xfce) o 8 @ D
Karabo Tcp://10.253.1.63:54456 (on exflonc105.desy.de) A OoX

Reset Toggle Auto play Download Video r

Data Selection

- SPB_EHD_MIC/CAM/HPVX2_1:output
+ data.image.type
» data.image.dimensions

» data.image.dimensionTypes

» data.image.rOlOffsets

» data.image.binning

» data.image.rotation

» data.image.flipX

» data.image.flipY

» data.image.bitsPerPixel

» data.image.encoding

» data.image.dimensionScales

] data.image.data

0 1 2 3 4 v Normalize train images

The current train id is: None
Fig. 7. FATRA GUI Online Detector window at experiment 5157

14

D\\./ MHz - Tomoscopy

Activities A fatra.py Apr19 18:47

Karabo endpoint window: tcp://10.253.1.63:54456 (on exFlonc105.desy.de) & %

Data Selection
= SPB_EHD_MIC/CAM/HPV...
+ data.image.type
» data.image.dimensions
» data.image.dimension...
© °image.rOlOffsets
image.binning
File image.rotation
image.flipX
image.flipy
image.bitsPerPixel
image.encoding

B G

x

FATRA (on exflonc105.desy.de)

About Start the simulator Stop simulators Settings Show logfile

Online Analysis Offline Analysis

Find proposal by number image.dimension...
S157

Running Simulators: Find proposal

Path for proposal:
/gpfs/exfel/exp/SPB/202401/p005157
Load
Karabo endpoint Run selection =

tcp:/flocalhost:5551 » scratch
- raw
Add Backend » r0008

» 10005
tcp://10.253.1.63:54456 Remove Backend = Open ' 10002 5
Open selected run

Permission denied for accessing path /gpfs/exfel/exp/SPB/202401/p005157

v Normalize train images
v Auto play trains

Export train to video

The current train id is: None

Fig. 8. The FATRA GUI main window.
On the left side at the main window is the online analysis section showing thet there is one running backennd on
port tcp://20.253.1.53:54456 and on right side is the actual proposal’s folder tre view.

15

